Finding the best not the most: regularized loss minimization subgraph selection for graph classification
نویسندگان
چکیده
منابع مشابه
the test for adverse selection in life insurance market: the case of mellat insurance company
انتخاب نامساعد یکی از مشکلات اساسی در صنعت بیمه است. که ابتدا در سال 1960، توسط روتشیلد واستیگلیتز مورد بحث ومطالعه قرار گرفت ازآن موقع تاکنون بسیاری از پژوهشگران مدل های مختلفی را برای تجزیه و تحلیل تقاضا برای صنعت بیمه عمر که تماما ناشی از عدم قطعیت در این صنعت میباشد انجام داده اند .وهدف از آن پیدا کردن شرایطی است که تحت آن شرایط انتخاب یا کنار گذاشتن یک بیمه گزار به نفع و یا زیان شرکت بیمه ...
15 صفحه اولFinding the Most Vital Edge for Graph Minimization Problems on Meshes and Hypercubes
Let G(V,E,w) be an undirected, weighted, connected simple graph. Let P be a minimization problem in G. Edge e∗ ∈ E is called the most vital edge if its removal from G maximizes the value of P in G(V,E − {e∗}, w). This paper considers the most vital edge with respect to the minimum spanning tree problem and the single-source shortest path problem. An O(n) optimal algorithm for finding the most v...
متن کاملSign-Constrained Regularized Loss Minimization
In practical analysis, domain knowledge about analysis target has often been accumulated, although, typically, such knowledge has been discarded in the statistical analysis stage, and the statistical tool has been applied as a black box. In this paper, we introduce sign constraints that are a handy and simple representation for non-experts in generic learning problems. We have developed two new...
متن کاملStochastic Methods for `1 Regularized Loss Minimization
We describe and analyze two stochastic methods for `1 regularized loss minimization problems, such as the Lasso. The first method updates the weight of a single feature at each iteration while the second method updates the entire weight vector but only uses a single training example at each iteration. In both methods, the choice of feature/example is uniformly at random. Our theoretical runtime...
متن کاملFinding the Most Appropriate Auxiliary Data for Social Graph Deanonymization
Given only a handful of local structural features about the nodes of an anonymized social graph, how can an adversary select an auxiliary (a.k.a. non-anonymized, known) graph to help him/her deanonymize (a.k.a. re-identify) the individuals in the graph? Examples of local structural features are node’s degree, node’s clustering coe cient, edge density of the node’s neighbors, etc. The objective ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2015
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2015.05.019